
80

70

60

50

40

30

20

10

0

Seconds

M
eg

ab
yt

es

THROUGHPUT COMPARISON

0      10      20      30     40      50     60      70      80

figure 1

Seconds
M

eg
ab

yt
es

WINDOW RIGHT-SIZING

0      1      2      3     4      5     6      7      8

3.5

3

2.5

2

1.5

1

0.5

0

figure 2

	 was specifically targeted at short-lived connections such as typical 
	 web connections. In this context, the measurement overhead of 	 	
	 AutoNCFTP is enormous.

Kernel vs. User Space Deployment
   •	AutoNCFTP can be deployed on systems even if it is not feasible to
	 run a modified kernel, or to even obtain a modified kernel from the
	 vendor. But systems that can run Dynamic Right-Sizing gain		 	 	
	 improved buffer management for all applications on a 
	 system without requiring any changes or recompilation of the 	 	 	
	 applications.
   •	With AutoNCFTP, only modified applications provide information to 		
	 the kernel about their buffer needs. This prevents the kernel from 	 	
	 most effectively using memory when it is in shortage.

Passive Measurement
Round-Trip Time:
To perform Dynamic Right-Sizing, it is necessary for the receiver to know
the round-trip time. In a typical TCP implementation, the round-trip time
is measured by observing the time between when data is sent and an 
acknowledgement is returned [1]. But during a bulk-data transfer, the
receiver might not be sending any data and would therefore not have a 
good round trip time estimate. For instance, an FTP data connection
transmits data entirely in one direction.

A system that is only transmitting acknowledgements can still estimate 
the round-trip time by observing the time between when a byte is first
acknowledged and the receipt of data that is at least one window 
beyond the sequence number that was acknowledged. If the sender is
being throttled by the network, this estimate will be valid. However, if 
the sending application did not have any data to send, the measured 
time could be much larger than the actual round-trip time. Thus this 
measurement acts only as an upper-bound on the round-trip time and 
should be be used only when it is the only source of round-trip time 
information.

TCP-friendly Throughput:
TCP-friendly throughput is measured by simply observing the progress of 
the connection for a round-trip time.

Summary
   •	Dynamic Right-Sizing has been implemented in Linux 2.2 	
	 and 2.4 kernels

   •	Measurement overhead is minimal: 24 bytes per 	 	 	 	
	 connection

   •	Dramatic improvement in data transfer throughput,
 	 equivalent to manual tuning

   •	Improved buffer management and memory utilization 	 	
	 for all  network connections

   •	Our algorithms and kernel implementation provides 		 	
	 several advantages over competing implementations

References

[1] Van Jacobson, “Congestion Avoidance and Control,” in 
Proceedings of SIGCOMM ’88, pp. 314– 329, Aug.1988

[2] Jian Lui and Jim Ferguson, “Automatic TCP socket buffer 
tuning,” in SC 2000 Research Gems, Nov. 2000, http://dast.nlanr.net/ 
Features/Autobuf/.

[3] Jamshid Mahdavi, “Enabling high performance data transfers on 
hosts,” Webpage, http://www.psc.edu/networking/perf_tune.html.

[4] Jeff Semke, Jamshid Mahdavi, and Matt Mathis., “Automatic TCP 
buffer tuning,” Proceedings of SIGCOMM ’98, pp. 315–323, Oct. 1998.

[5] Brian L. Tierney, “TCP tuning guide for distributed application on 
wide area networks,” ;login, vol. 26, no. 1, Feb. 2001.

Visit us on the web at: http://public.lanl.gov/radiant/

Research and Development in
Advanced Network Technology

	

BOTTLENECK SIZE OF BUFFERS & RECEIVE WINDOW
Under-Size
<demand

Right-Size
=demand

Over-Size
>>demand

unused bandwidthReceiving App no problems over-allocated send buffers
over-allocated receive buffers

unused bandwidthNetwork no problems over-allocated send buffers

unused bandwidthSending App no problems no problems

demand=min(Application-to-Application TCP-friendly throughput x delay, Congestion Window)

performance for connections with larger delay-bandwidth products and 
the misappropriation of scarce resources to connections with smaller 
delay-bandwidth products[4]. 

Consequently, we propose an operating system technique called 
Dynamic Right-Sizing that eliminates the need for this manual process. 
Compared to previous work on this problem, our solution is more 
efficient and both more transparent and widely-usable to applications. 
�
In addition, Dynamic Right-Sizing enables conservative buffer 
management on senders and receivers. This addresses many of the TCP 
scalability problems with systems such as large web servers that handle 
thousands of simultaneous connections to a diverse set of peers. 

In short, Dynamic Right-sizing lets the receiver estimate the sender’s 
congestion window size and use that estimate to dynamically change
the size of the receiver’s window advertisements. As a result, the sender 
will be congestion-window-limited rather than flow-control-window-
limited.

Performance Tests
Figure 1 shows the relative speeds of Dynamic Right-Sizing, a
manually tuned over-sized window, and a connection with the default 
window size.  All measurements were made between network-bound 
Linux 2.4 systems with Gigabit Ethernet interfaces on a simulated WAN 
link with a 100ms round-trip delay.

Over-sizing is more aggressive in the beginning since the congestion 
window doubles with each acknowledgement, while Right-Sizing
doubles the window once per round-trip.  However, the over-size 

connection quickly incurs packet loss and reduces its rate to the same 
rate used by Right-Sizing.  Thus Dynamic Right-Sizing achieves the same 
instantaneous throughput for most of the connection.  Meanwhile, the 
default configuration is more than 13 times slower for this 78MB 
transfer.

Figure 2 shows how Dynamic Right-Sizing grows the receive window
initially and then flattens off at twice the usable window size. The 
Flightsize is the amount of sent but unacknowledged data in transit.

Comparing Dynamic Right-Sizing 
and AutoNCFTP
Both Dynamic Right-Sizing and AutoNCFTP(2) adjust the receive buffer 
so that it is no longer a bottleneck to performance. However there are 
several important differences that stem from the fact that Dynamic 
Right-Sizing is a kernel modification to the TCP stack, while AutoNCFTP 
demonstrates user-space code that could be included in network 
applications running on unmodified operating systems.

TCP-friendly Throughput vs. Available Bandwidth
   •	The initial available bandwidth measured by AutoNCFTP is an 	 	 	
	 upper bound to the TCP-friendly throughput, but is an overestimate 	
	 of the amount of buffer used during TCP slow-start. Available 	 	 	
	 bandwidth is also an over-estimate if the bottleneck in the con-	 	 	
	 nection is the sender or receiver rather than the network. 
   •	Because  AutoNCFTP is a user-space process, it has no standard way 	
	 of determining its current congestion window.

Passive vs. Active Measurement
   •	AutoNCFTP requires 15KB of non TCP-friendly measurement traffic
	 and as much as 2 seconds of setup latency. The Linux 2.4 solution

 �

Comparison of Solutions
Dynamic Right-Sizing (solves 5 of 5 problems)
Dynamic Right-Sizing prevents both under-sized windows and oversized 
windows by bounding the window size by the congestion window 
and the measured throughput of the actual TCP connection. The kernel 
has better information about the buffer needs of individual con-
nections, and can then fairly allocate buffers accordingly.

Auto NCFTP (solves 3+ of 5 problems)
AutoNCFTP[2] sets the send and receive buffers and receive window 
equal to the initial bandwidth-delay product of the network. This avoids 
problems with under-sized windows, but the bandwidth measurements 
will frequently be larger than the amount of bandwidth actually usable 
by TCP’s congestion control mechanisms. As a result superfluous buffers 
space may be used on the sender and receiver for buffering data. This 
superfluous space may starve other connections, but not nearly to the 
degree of TCP Auto-Tuning.

TCP Auto-Tuning (solves 3 of 5 problems)
Auto-tuning[4] prevents under-sized windows by using over-sized win-
dows. Fair-share algorithms are used to manage buffer space, but these 
allocation decisions are not based on the best window-size for a 
connection and the resulting amount of buffer space that is actually 
useful to each individual connection. As a result superfluous buffers 
space may be used on the sender and receiver for buffering data.

Linux 2.4 (solves 2 of 5 problems)
The Linux 2.4 kernel prevents over-using send buffers when the bottle-
neck is the receiver or network. This is done by starting connections 
with small send windows and growing them in proportion to the 
amount of data necessary to fill the network pipe, as affected by 
congestion control.

	 Mike Fisk,	 Los Alamos National Laboratory and University of California San Diego
	 	 mfisk@lanl.gov
Wu-chun Feng, 	Los Alamos National Laboratory
	 	 feng@lanl.gov

Explanation:
Unused bandwidth: 
	 The window advertised by the receiver is smaller than the band-	 	
	 width-delay product of the network. The sender will send a full 		 	
	 window’s worth of data but will then stall waiting for an acknow-	 	
	 ledgement from the receiver before it can send more. This leads to 	 	
	 bursty stop-and-go transmissions punctuated by periods of unused 		
	 bandwidth.

Over-allocated send buffers: 
	 The sending application is generating data faster than TCP can 		 	
	 transmit. The operating system’s send buffers quickly fill, no matter 	 	
	 how large they are. In order to send a full window’s worth of data, 		
	 the sender must use one window’s worth of buffer. Some additional 	
	 buffer allows the scheduling of the application to be decoupled 	 	
	 from TCP, but using significantly more buffers space for this con-		 	
	 nection is unnecessary and may starve other connections. 

Over-allocated receive buffers: 
	 Receive buffers are used in two cases:
� 	    •	To buffer acknowledged data until it can be delivered to the 	 	
	 	 receiving application. This buffer allows the 	application 		 	 	
	    	 scheduling to be decoupled from TCP, but only needs to be 	 	
	 	 large enough to cover scheduling latency. If the data is arriving 	
	 	 at a sustained rate that is faster than the receiving application 	
	 	 given to the connection will be filled with no benefit and at the 	
	 	 potential expense of the starvation of other connections.
	    •	To buffer out-of-order data following packet loss. Assuming 		 	
	 	 correct SACK operation, only two bandwidth-delay products 	 	
	 	 worth of data is necessary to correct a small number of drop 	 	
	 	 events.

Abstract
Network bandwidth has kept pace with the 
widespread arrival of bandwidth intensive 
applications such as streaming media and grid 
computing, but the TCP flow-control 
implementations in most operating systems make 
it difficult or impossible for applications to take 
advantage of high-bandwidth WANs. Dynamic 
Right-Sizing is an operating system technique 
for automatically tuning TCP to solve this 
problem. Compared to previous work, Dynamic 
Right-Sizing is more efficient and transparent 
and applies to a wider set of scenarios by 
simultaneously supporting network-bound 
senders, application-bound receivers, and both 
high- and low-bandwidth links.

Introduction
Grid and networking researchers continue the practice of manually 
optimizing TCP buffer sizes to keep the network pipe full [6, 3], and 
thus achieve acceptable performance over the wide-area network, 
whether for bulk-data transfer or in support of computational grids, 
data grids, or access grids. Not only is this process cumbersome, but 
the result of tuning window sizes for a particular pair of hosts is sub-par  

DYNAMIC RIGHT-SIZING: 	
TCP FLOW-CONTROL ADAPTATION
DYNAMIC RIGHT-SIZING: 	
TCP FLOW-CONTROL ADAPTATION

Need for Right-Sizing


